Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs.
نویسندگان
چکیده
Deoxyguanosine kinase (dGK) is an enzyme responsible for the phosphorylation of purine deoxynucleosides in mitochondria of mammalian cells. Its role in activation of pharmacologically used nucleoside analogs is not well understood, because of the low levels of dGK found in tissue extracts and its inactivation during purification. The cDNA for dGK was recently cloned and expressed in Escherichia coli. Here we present an improved procedure for expression and purification of a highly active form of human recombinant dGK. The enzyme showed a broad substrate specificity toward natural purine and pyrimidine deoxynucleosides as well as toward important nucleoside analogs. The Km and Vmax values for deoxyguanosine, deoxyinosine, deoxyadenosine, and deoxycytidine were 4, 13, 460, 330 microM and 43, 330, 430 and 60 nmol/min/mg of protein, respectively. Antileukemic purine analogs such as arabinosyl guanine, 2-chloro-2'-deoxyadenosine, 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine, and 2-fluoro-arabinosyl-adenine were phosphorylated as efficiently by dGK as the natural nucleoside substrates. This is the first report in which 2-fluoro-arabinosyl-adenine and 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine were shown to be good substrates for dGK. The antiviral analogs dideoxyinosine and arabinosyl adenine also showed significant activity with dGK, as did several pyrimidine analogs (e.g., the cytostatic drugs 5-fluoro-2'-deoxycytidine and difluorodeoxycytidine). The broad specificity of dGK described here may change our understanding of the mechanisms responsible for the efficacy and mitochondrial toxicity of several nucleoside analogs.
منابع مشابه
Selective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mut...
متن کاملAntiviral guanosine analogs as substrates for deoxyguanosine kinase: implications for chemotherapy.
A highly active form of human recombinant deoxyguanosine kinase (dGK) phosphorylated purine nucleoside analogs active against cytomegalovirus, hepatitis B virus, and human immunodeficiency virus, such as penciclovir, 2',3'-dideoxyguanosine and 3'-fluoro-2',3'-dideoxyguanosine. The antiherpesvirus drug ganciclovir, which is also used in gene therapy, was a substrate for dGK, but with low efficie...
متن کاملFour deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase.
In mammalian cells, there are three pyrimidine nucleoside salvage enzymes with the capacity to phosphorylate all four deoxynucleosides, the two thymidine kinase isoenzymes, TK1 and TK2, and the deoxycytidine kinase, dCK. TK1 is cell cycle-regulated; TK2 is expressed constitutively and can phosphorylate deoxycytidine to the same extent as thymidine. dCK phosphorylates deoxycytidine, deoxyadenosi...
متن کاملStereoisomeric selectivity of human deoxyribonucleoside kinases.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substr...
متن کاملPhosphorylation of Pyrimidine Deoxynucleoside Analog Diphosphates
D-Nucleoside analogs, which are in the natural configuration, as well as the L-nucleoside analogs, are clinically relevant antiviral and anticancer agents. Metabolism of L-nucleoside analog diphosphates to the triphosphates, however, remains unexplored. Studies with recombinant nm23-H1 and -H2 isoforms indicated that L-nucleoside analog diphosphates were not phosphorylated by their nucleoside d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 53 2 شماره
صفحات -
تاریخ انتشار 1998